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There is increasing interest in evaluating the association between specific fine-particle (particles with aerody-

namic diameters less than 2.5 µm; PM2.5) constituents and adverse health outcomes rather than focusing solely

on the impact of total PM2.5. Because PM2.5 may be related to both constituent concentration and health out-

comes, constituents that are more strongly correlated with PM2.5 may appear more closely related to adverse

health outcomes than other constituents even if they are not inherently more toxic. Therefore, it is important to

properly account for potential confounding by PM2.5 in these analyses. Usually, confounding is due to a factor

that is distinct from the exposure and outcome. However, because constituents are a component of PM2.5, stan-

dard covariate adjustment is not appropriate. Similar considerations apply to source-apportioned concentrations

and studies assessing either short-term or long-term impacts of constituents. Using data on 18 constituents and

data from 1,060 patients admitted to a Boston medical center with ischemic stroke in 2003–2008, the authors

illustrate several options for modeling the association between constituents and health outcomes that account

for the impact of PM2.5. Although the different methods yield results with different interpretations, the relative

rankings of the association between constituents and ischemic stroke were fairly consistent across models.

case crossover; epidemiology; ischemic stroke; particle constituents; particulate matter; stroke

Abbreviations: IQR, interquartile range; PM2.5, particles with aerodynamic diameters less than 2.5 µm.

Several studies have shown that short-term increases in
levels of fine ambient particulate matter (particles with
aerodynamic diameters less than 2.5 µm; PM2.5) are associ-
ated with an increased risk of cardiovascular morbidity and
mortality (1) and exacerbation of respiratory diseases (2).
However, PM2.5 is composed of several constituents that
have different physical and chemical properties and differ-
ent toxicities (3–10).

Studies in which the association between constituents
and health outcomes are examined involve additional con-
siderations beyond those that arise in studies of the impact
of PM2.5. First, there are concerns about errors in measure-
ment of both PM2.5 and constituents. When daily levels of
a constituent are very low, measurements may be below the
level of detection, leading to unstable estimates of constitu-
ent concentrations. Second, PM2.5 is often associated with

both the constituent concentration and the health outcome,
potentially confounding the observed association. If a con-
stituent represents a large proportion of PM2.5 mass or if
the exposure pattern of the constituent is highly correlated
with that of PM2.5 (e.g., because it represents a common
exposure source), the constituent may seem more strongly
associated with adverse health outcomes than other constit-
uents because of its association with PM2.5 rather than
because of its inherent toxicity.

Several strategies have been used to evaluate the relation
between specific constituents and health outcomes, such as
modeling the association between constituent concentra-
tions and ignoring PM2.5 or modeling how the constituent
modifies the impact of PM2.5 on a health outcome.
However, these techniques may lead to incorrect conclu-
sions. In the present study, we discuss the limitations of
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Table 1. Advantages and Disadvantages of Several Options for Modeling the Association Between Particle Constituents and Health Outcomes

Parameter Question Modela Advantages Disadvantages

Constituent concentration What is the effect of a particular
constituent?

g(μ) = β0 + β1(constituent) + [γ’X] Easy to interpret Confounding by total PM2.5

Confounding by other constituents that
covary

Constituent proportion What is the effect of the
percentage of total PM2.5 from a
particular constituent?

g(μ) = β0 + β1(constituent/PM2.5) + β2(PM2.5)
+ β3((constituent/PM2.5) × PM2.5) + [γ’X]

Accounts for total PM2.5

(but may not effectively
prevent confounding by
PM2.5)

Confounding by total PM2.5

Confounding by other constituents that
covary

Results do not provide information on
absolute magnitude of constituent
change associated with outcome.

Information about PM2.5

composition
Problem of zeros; some constituents
contribute little to mass, resulting in
unstable estimates.

Interaction between
constituent concentration
(or constituent proportion)
and PM2.5 mass

How does a particular constituent
modify the effect of total PM2.5?

g(μ) = β0 + β1(constituent) + β2(PM2.5)
+ β3(constituent × PM2.5) + [γ’X] or g(μ)
= β0 + β1(constituent/PM2.5) + β2(PM2.5)
+ β3((constituent/PM2.5) × PM2.5) + [γ’X]

Accounts for total PM2.5 Collinearity between constituent and
PM2.5

Easy to interpret Results do not provide information on
absolute magnitude of constituent
change responsible for outcome.

Information about PM2.5

composition

Constituent concentration
adjusting for PM2.5 mass

What is the effect of a particular
constituent after adjusting for
total PM2.5?

g(μ) = β0 + β1(constituent) + β2(PM2.5) + [γ’X] Accounts for total PM2.5 Confounding by other constituents that
covary

May be over adjusting for constituents
highly correlated with total PM2.5

Easy to interpret Collinearity between constituent and
PM2.5 and extent of this problem
depend on relative contribution of
constituent to total PM2.5.

Does not provide indication of variation
in constituent while holding total
PM2.5 constant.

Constituent residual What is the effect of a particular
constituent holding total PM2.5

constant?

Residual: constituent = total PM2.5 Eliminates confounding
by total PM2.5

Hard to interpret: More of one
constituent equates to less of
another, which is larger problem for
constituents with larger contribution
to total PM2.5.

g(μ) = β0 + β1(residual) + [γ’X] No collinearity between
constituent and PM2.5

Removes extraneous
variation due to total
PM2.5.

Results do not provide information on
absolute magnitude of constituent
change associated with outcome.

Table continues
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these approaches and propose the use of residuals, a
method that is commonly used in several fields but that has
not been widely adapted in research on constituents and
health outcomes. Although the analytic issues discussed
below are relevant for studies of individual constituents,
multipollutant analyses, studies of source contributions esti-
mated with factor analysis, and studies of the long-term
impact of constituents on health outcomes, we illustrate the
model options using a straightforward example of the asso-
ciation between 18 constituents and ischemic stroke onset.
Because constituents serve as indicators of a combination
of species emanating from a particular source, the results
pertaining to a certain constituent refer to the impact of that
constituent and other species with a similar exposure
pattern that likely originate from the same source.

Wellenius et al. (11) reported that an interquartile range
(IQR) increase in PM2.5 levels (6.4 µg/m3) was associated
with a 12% increase in the risk of ischemic stroke onset. To
illustrate the model options discussed below, we used the
subset of this sample for whom we had data on constitu-
ents. A priori, we hypothesized that in addition to black
carbon, transition metals (e.g., nickel and vanadium),
which are tracers of fuel oil combustion and home heating,
would be associated with an increased risk of ischemic
stroke, whereas chloride, a tracer of sea salt, would not be
associated with increased stroke risk.

MATERIALS AND METHODS

Study design

Details of the study design and analysis are described in
the Web Appendix (available at http://aje.oxfordjournals.
org/). Briefly, we identified consecutive patients 21 years of
age or older who were admitted to the Beth Israel Deacon-
ess Medical Center in Boston, Massachusetts, with neurolo-
gist-confirmed ischemic stroke and who resided in the
Boston metropolitan region. In this study, we restricted our
analysis to patients who lived within 40 km of the air pollu-
tion monitoring site and had a stroke on dates for which we
had data on constituents (January 1, 2003–October 31,
2008). We used the time-stratified case-crossover study
design and conditional logistic regression to assess the as-
sociation between ischemic stroke onset and levels of con-
stituents in the 24 hours preceding each event. This study
was approved by the institutional review board at the Beth
Israel Deaconess Medical Center.

Model options

The advantages and disadvantages of several model
options are summarized in Table 1. The models are repre-
sented in the form of a generalized linear model, with the
dependent variable for the health outcome (μ) expressed as
a function of the independent variables for constituents,
total PM2.5, and a matrix of [γ′X] other covariates. This
model can accommodate different functional forms for the
regression, such as linear regression, logistic regression,
and survival analysis.T
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Constituent concentration. A common approach is to
model constituent concentration alone (5, 8, 12, 13).
However, some constituents may be associated with disease
based on their correlation with PM2.5. When PM2.5 is posi-
tively associated with both constituent concentration and
adverse health outcomes (1), analyses of individual constit-
uents yield estimates that are biased upward. Additionally,
these models are confounded by other constituents that
covary with the constituent of interest.

Constituent proportion. One method to account for
PM2.5 is to compute the proportion of PM2.5 contributed by
a particular constituent, which is analogous to calculating
the proportion of calories from a macronutrient (nutrient
density) (14). Implicitly, the coefficient for the constituent
proportion assumes that the impact of the constituent is at-
tributable to the proportion of PM2.5 mass rather than the
absolute constituent level, which seems implausible. Fur-
thermore, a constituent may have a low concentration and
yet be highly correlated with PM2.5 because it represents a
common exposure source. Additionally, this approach may
incur further errors instead of removing confounding by
PM2.5; for constituents that are weakly correlated with
PM2.5 or that exhibit low variability, dividing by PM2.5

creates a variable that is highly related to PM2.5 and may
even reverse the direction of the association between the
constituent and the health outcome (14). Therefore, one
should include in the model a term for PM2.5, a coefficient
that generally represents the impact of PM2.5 if constituent
proportion is not strongly correlated with PM2.5.

Interaction between constituent concentration (or constitu-
ent proportion) and PM2.5 mass. One option is to include
an interaction term for PM2.5 and the constituent concentra-
tion (or constituent proportion). However, constituent con-
centration and PM2.5 are often collinear, leading to lower
independent variation for both of the terms and an altered
interpretation of the results. Additionally, this approach
does not quantify the levels of the constituent that pose the
increased risk, only the relative importance of different con-
stituents. The greatest drawback of this approach is that the
interpretation of an interaction term in this setting is not
clear. Usually, interaction terms are used to estimate how
an exposure-disease association is modified by an indepen-
dent third factor, but in this case the interaction involves a
component of the exposure itself.

Constituent concentration adjusted for PM2.5 mass. A
simple way to account for PM2.5 is to include both the con-
stituent concentration and the level of PM2.5 as terms in a
model. The parameter for the constituent represents the
impact of higher levels of the constituent (and its corre-
lates), holding the other constituents constant. The parame-
ter for PM2.5 represents the difference in disease risk
associated with all other constituents. Because constituent
concentration and PM2.5 are often strongly correlated, the
inclusion of 2 collinear terms may result in unstable coeffi-
cients with large variance. This may occur when sulfur and
PM2.5 are simultaneously included in a model. In our data,
the sulfur is in the form of (NH4)2SO4. Accordingly, we
also constructed a model with sulfur and non-ammonium
sulfate mass (defined as PM2.5 – 4.125 × sulfur mass) and
compared the results to a model with sulfur and PM2.5.

Constituent residual. Invoking the assumptions of
linear regression, PM2.5-adjusted constituent levels can be
calculated by constructing a linear regression model with
the constituent concentration as the dependent variable and
the PM2.5 level as the independent variable. The residuals
from this model are uncorrelated with PM2.5 levels and rep-
resent the variation in constituent levels independent of
PM2.5. The coefficient for constituent residuals in the
health outcome model represents the increase in risk associ-
ated with higher levels of the constituent while holding
PM2.5 constant, that is, higher levels of the constituent (and
other constituents that travel with it) and lower levels of
other constituents that make up total PM2.5 mass.
Assuming the model used to create the residuals was cor-

rectly specified, the coefficient for the constituent residual
should be identical to the coefficient for constituent concen-
tration in a single-pollutant model. If PM2.5 is included in the
model with the constituent residual, both the coefficient and
the standard errors from the residual model should be identi-
cal to those from the model adjusted for PM2.5; however, the
interpretation of the PM2.5 term is slightly different. Because
constituent residuals and PM2.5 are uncorrelated, the coeffi-
cient for PM2.5 in the residual model represents the indepen-
dent impact of the constituent of interest and the impact of
PM2.5. In the model with PM2.5 and the constituent, though,
the coefficient for PM2.5 represents the impact of all constitu-
ents other than the constituent of interest.
There are several reasons to include a term for PM2.5 in

the model with the constituent residual (14); if PM2.5 is
strongly associated with the health outcome independent of
the constituent, including it may improve the precision of
the estimate, uncorrelated variables can confound each
other in nonlinear models, and this term quantifies the mag-
nitude of the association between PM2.5 and the health
outcome. The main limitation of the residual method is that
the interpretation is not as straightforward as other options;
a higher level of one constituent (and its correlates) implies
lower levels of all others.

PM2.5 residual. Instead of regressing the constituent con-
centration on PM2.5, one could regress PM2.5 on the constit-
uent concentration, yielding results that answer a different
question. As a variable in the health outcomes model, the
coefficient for the PM2.5 residual represents the increase in
risk associated with higher levels of PM2.5 while holding the
constituent and its correlates constant, that is, higher levels
of PM2.5 after removing the covariation due to the constitu-
ent of interest and all related constituents.

RESULTS

Table 2 presents the clinical characteristics for the partic-
ipants included in this analysis. Table 3 presents the mean
daily levels of PM2.5 mass and constituent concentrations
for the subset of the sample included in this analysis. In
this subset of the population, an IQR increase in PM2.5

levels (6.4 µg/m3) over the past 24 hours is associated with
a 14% (95% confidence interval: 2, 28) higher risk of is-
chemic stroke onset. The correlations between the constitu-
ent concentrations are reported in Table 4, the correlations
between PM2.5 and the proportion of PM2.5 from each
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constituent are reported in Table 5, and the results of the
case-crossover analyses are shown in Figure 1.

The results were fairly consistent across the different
methods that were used to evaluate the association between
constituents and ischemic stroke. In all analyses that ac-
counted for PM2.5, the strongest associations were found
for black carbon and nickel, and there was no increased
risk associated with sodium or chloride. Although sulfur
represents a large proportion of PM2.5, the greatest harm is
seen for constituents that have lower concentrations. Com-
pared with models with constituent residuals, models
further adjusted for PM2.5 did not have improved precision
and slightly altered the relative ranking of the different con-
stituents. Compared with models with constituent concen-
tration and PM2.5, the models with constituent residuals
adjusted for PM2.5 resulted in estimates with a similar rela-
tive ranking and smaller variance. When we stratified by
warm versus cool season, the results for each constituent
were not materially different. Because fireworks may cause
a spike in manganese and potassium (15), we conducted a
sensitivity analysis excluding data from July 4 and New
Year’s Eve, and the results for all model options were not
materially altered.

Constituent concentration

In models in which PM2.5 was ignored, several constitu-
ents were associated with a higher stroke risk. The strongest
associations were seen for black carbon, nickel, and sulfur
(Figure 1A).

Constituent proportion

The estimates for constituent proportion were unstable.
Consistent with results using other approaches, the

estimates for nickel and vanadium were high, but the rela-
tive ranking of the coefficients for other constituents dif-
fered from other approaches (Web Table 1). One may
expect that PM2.5 will be uncorrelated with constituent pro-
portion and therefore represent the impact of PM2.5.
However, because it is computed as the quotient of constit-
uent concentration and PM2.5, by definition, there is usually
a strong inverse correlation between PM2.5 and constituent
proportion (Table 5). Moreover, it seems implausible that
the risk of health outcomes is attributable to the proportion
of PM2.5 mass rather than the absolute level of the constitu-
ent. Therefore, this option is not recommended.

Interaction between constituent concentration

(or constituent proportion) and PM2.5 mass

There is no statistical evidence that the association
between PM2.5 and stroke risk is modified by a particular
constituent composition (Web Table 2). The estimated as-
sociation between PM2.5 and stroke risk differs widely, de-
pending on which constituents and interactions are
included in the model.

Constituent concentration adjusting for PM2.5 mass

Concordant with results from other models, higher levels
of black carbon, nickel, and vanadium were associated with
higher stroke risk (Figure 1B). In the model with constitu-
ent concentration alone, higher levels of sulfur were associ-
ated with a higher stroke risk, but this association is much
lower after adjustment for PM2.5. Among the constituents
included in this example, sulfur contributed the largest pro-
portion to total mass and was highly correlated with fluctu-
ations in daily PM2.5 (ρ = 0.88; Table 3). Therefore, it is
unclear whether adjustment for PM2.5 correctly accounted
for confounding or whether it inadvertently overadjusted
for factors that may be highly correlated with PM2.5 but
that are also inherently toxic. Instead of the model includ-
ing sulfur and PM2.5, the estimate for sulfur in a model ad-
justed for non-ammonium sulfate mass resulted in an
estimate that was extremely similar because PM2.5 and non-
ammonium sulfate mass were highly correlated (ρ = 0.94).

Constituent residual

In an analysis using the residuals from the regression of a
constituent on PM2.5, the coefficient represents the impact of
higher levels of a specific constituent while holding PM2.5

constant (Figure 1C). Consider the coefficients for nickel
and vanadium, transition metals hypothesized to increase
stroke risk, and sodium, a constituent that presumably has no
impact on stroke risk. If PM2.5 is held constant, higher levels
of harmful constituents equate to lower levels of harmless
ones, so the odds ratios for nickel (odds ratio = 1.09) and va-
nadium (odds ratio = 1.05) are greater than 1; on the other
hand, higher levels of harmless constituents equate to lower
levels of toxic ones, so the odds ratio for sodium (odds
ratio = 0.90) is less than 1. Further adjustment for PM2.5 re-
sulted in similar, though slightly weaker, coefficients.

Table 2. Clinical Characteristics of 1,060 Patients Hospitalized for

Acute Ischemic Stroke and Residing in the Boston, Massachusetts,

Metropolitan Area, 2003–2008a

No. of
Participants

%

Female 572 54

White 808 76

Past medical history

Stroke or transient ischemic attack 292 28

Atrial fibrillation 275 26

Hypertension 779 74

Coronary artery disease 260 25

Heart failure 143 14

Diabetes mellitus 302 29

Chronic obstructive pulmonary disorder 69 7

Smoking history

Current smoker 155 15

Former smoker 310 29

a The mean age of the patients was 72.6 years (standard

deviation, 15 years).
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Although the estimates were similar, they were not identi-
cal to those from the models adjusted for PM2.5. Because we
found that the association between PM2.5 and stroke onset
was linear on the logit scale, we wanted to account for the
linear effect of PM2.5 in our evaluation of constituents and
stroke risk. Therefore, we calculated the residuals using
linear regression with 2 continuous terms. This model
assumed constant variation in the dependent variable across
levels of the independent variable (homoscedasticity), but in
this data set, there was greater variation in the constituent
residuals at lower levels of PM2.5 because many of the data
were near or below the detection limit when the air is clean
(i.e., low levels of PM2.5). Additionally, diagnostics indicat-
ed that there might have been deviations from linearity at the
extremes of the distribution, which could explain the slight
differences between the coefficients for these models. For in-
stance, it is possible that there are abrupt spikes in some con-
stituents that are not related to the PM2.5 level on a given
day, resulting in a poor fit for the linear model used to create
the residuals. Alternatively, in other settings, this may be
due to confounding by seasonal variation. We used the time-
stratified case crossover approach, which compared exposure
levels within month, so the relevant assessment of the fit of
the residual model was conducted for each month. However,
different assessments may be more appropriate for studies
using other regression model specifications.

PM2.5 residual

In an analysis using the residuals from regressing PM2.5

on a constituent, the results reflected the increased stroke
risk associated with higher levels of PM2.5 independent of
the impact of that specific constituent. For instance, on days
with similar levels of vanadium, there was a 10% higher
stroke risk associated with an IQR increase in PM2.5 (vs.
14% when we used PM2.5, presumably because of less
toxic constituents in the PM2.5); on days with similar
sodium levels, there was a 17% increased stroke risk asso-
ciated with every IQR increase in PM2.5 (presumably
because there were more harmful constituents).

DISCUSSION

In the present article, we illustrated the use of several
options for modeling the association between constituents
and health outcomes. In our study, we used conditional
logistic regression to evaluate the association between
constituents and the onset of ischemic stroke, but the con-
siderations for selecting an appropriate parameterization are
also relevant for analyses that use linear regression to eval-
uate the impact of constituents on continuous outcomes
and analyses that use source apportionment methods or
model the joint impact of several constituents. These

Table 3. Mean Daily Levels of Particles With Aerodynamic Diameters Less Than 2.5 µma and Constituentsb, Boston, Massachusetts, January

2003–September 2008

Interquartile Range

Exposure
% Below
Detection

Median Mean (SD)
% of
PM

Constituent
Concentration

Constituent
Residual

PM2.5

Residual

PM2.5 5.2 9.3 (5.9) 6.4

Silicon 1.96 27.9 35.2 (29.7) 0.38 30.3 26.6 5.8

Chlorine 18.97 0.6 17 (79.8) 0.18 5.8 10.8 6.4

Potassium 0 31.6 39.9 (85.2) 0.43 21.4 16.5 6.1

Manganese 5.32 1 2 (1.4) 0.02 1.7 1.6 6

Zinc 0.04 5.9 10.8 (8.6) 0.12 7.2 6.1 5.4

Sodium 4.77 45.3 118 (110.1) 1.27 112.9 80.4 5.3

Copper 3.95 1 2.3 (3.1) 0.02 2.1 1.9 6

Aluminum 2.11 11.1 20.3 (14.3) 0.22 15 11.7

Calcium 1.6 16.3 25.2 (13.4) 0.27 16 15 5.9

Bromine 0.04 0.7 1.6 (1.3) 0.02 1.6 1.4 5.6

Lead 9.82 0.7 2.1 (1.9) 0.02 2.3 2.1 5.4

Selenium 0.04 0 0.6 (0.9) 0.01 0.9 0.8 6

Titanium 1.21 1 2.4 (2.4) 0.03 2.3 2 5.9

Vanadium 4.65 0.8 2.7 (3.1) 0.03 2.7 2.4 5.4

Iron 0 37.6 59.2 (30.6) 0.64 37 31.7 5.2

Sulfur 0.08 456.2 921.6 (746.9) 9.91 650.2 307 2.5

Nickel 1.37 0.8 2.3 (2.1) 0.02 2.2 2 5.7

Black
carbon

0 585.3 654.2 (354.1) 7.03 437.6 296.2 4.2

Abbreviations: PM2.5, particles with aerodynamic diameters less than 2.5 µm; SD, standard deviation.
a Measured as μm/m3.
b Measured as ng/m3.
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considerations are also pertinent in studies of the long-term
impact of constituents on health outcomes and apply to
Poisson regression and other statistical models.

Although many constituents represent negligible contri-
butions to total PM2.5, we detected associations between
several constituents and stroke risk because constituents
with a small mass may still have high toxicity on their own
or in combination with other copollutants. Many constitu-
ent concentrations are driven by the same meteorological
conditions, resulting in a high correlation between daily
fluctuations in constituent concentrations. Furthermore, a
constituent may serve as a tracer for a prevalent source. For
instance, even though the average nickel concentration was
only 2.3 ng/m3, representing only 0.02% of PM2.5 in our
region, nickel serves as a tracer of oil combustion, a large
contributor to PM2.5. Therefore, the estimates in the health
outcomes model represented the impact of the constituent
of interest and the impact of related constituents. Similarly,
adjustment for PM2.5 accounted for potential confounding
by PM2.5 and by other constituents that covary with PM2.5.
For instance, adjustment for PM2.5 led to a lower estimate
for the impact of sulfur because these factors are strongly
correlated. The lower estimate from the PM2.5-adjusted
model is due to incorrect overadjustment rather than an ac-
curate portrayal of the impact of sulfur independent of
PM2.5. To mitigate this concern, it may be preferable to
adjust for non-ammonium sulfate mass rather than PM2.5.

This raises an issue that cannot be fully addressed with
statistical methods. Because a constituent is emitted from

Table 4. Spearman Correlations Between PM2.5 and Constituents in Boston, Massachusetts, January 2003–September 2008

PM2.5 Si Cl K Mn Zn Na Cu Al Ca Br Pb Se Ti V Fe S Ni BC

PM2.5 1

Si 0.41 1

Cl 0.07 −0.01 1

K 0.67 0.48 0.29 1

Mn 0.28 0.32 0.13 0.22 1

Zn 0.55 0.31 0.23 0.53 0.43 1

Na 0.53 0.22 0.27 0.42 0.07 0.22 1

Cu 0.35 0.24 0.29 0.36 0.30 0.47 0.17 1

Al 0.55 0.79 −0.01 0.53 0.30 0.32 0.36 0.23 1

Ca 0.39 0.65 0.16 0.42 0.40 0.48 0.19 0.37 0.57 1

Br 0.45 0.26 0.28 0.51 0.12 0.35 0.37 0.25 0.31 0.34 1

Pb 0.43 0.23 0.09 0.44 0.12 0.36 0.23 0.30 0.27 0.19 0.33 1

Se 0.23 0.05 0.02 0.08 0.06 0.13 0.12 0.10 0.10 0.13 0.17 0.07 1

Ti 0.40 0.55 −0.06 0.34 0.28 0.34 −0.02 0.28 0.51 0.66 0.21 0.16 0.20 1

V 0.47 0.14 0.08 0.27 0.13 0.38 0.23 0.11 0.21 0.33 0.25 0.21 0.20 0.34 1

Fe 0.53 0.65 0.10 0.46 0.50 0.59 0.19 0.63 0.57 0.73 0.30 0.31 0.11 0.61 0.31 1

S 0.88 0.30 −0.01 0.48 0.20 0.42 0.58 0.30 0.45 0.31 0.38 0.33 0.26 0.33 0.42 0.42 1

Ni 0.37 0.08 0.15 0.28 0.18 0.50 0.19 0.31 0.14 0.40 0.25 0.20 0.18 0.28 0.75 0.37 0.38 1

BC 0.72 0.29 0.08 0.39 0.32 0.54 0.30 0.51 0.34 0.36 0.28 0.35 0.15 0.36 0.45 0.66 0.58 0.36 1

Abbreviations: Al, Aluminum; BC, black carbon; Br, bromine; Ca, calcium; Cl, chlorine; Cu, copper; Fe, iron; K, potassium; Mn, manganese;

Na, sodium; Ni, nickel; Pb, lead; PM2.5, particles with aerodynamic diameters less than 2.5 µm; S, sulfur; Se, selenium; Si, silicon; Ti, titanium;

V, vanadium; Zn, zinc.

Table 5. Correlation Between Particles With Aerodynamic

Diameters Less Than 2.5 µm (PM2.5) and the Proportion of PM2.5

From Each Constituent, Boston, Massachusetts, January 2003–

September 2008

Constituent Spearman Correlation Coefficient for PM2.5

Silicon −0.312

Chlorine −0.182

Potassium −0.499

Manganese −0.443

Zinc −0.406

Sodium −0.03

Copper −0.234

Aluminum −0.375

Calcium −0.68

Bromine −0.25

Lead −0.149

Selenium 0.0472

Titanium −0.416

Vanadium −0.163

Iron −0.587

Sulfur 0.119

Nickel −0.333

Black carbon −0.405

Abbreviation: PM2.5, particles with aerodynamic diameters less

than 2.5 µm.
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Figure 1. Incidence rate ratios and 95% confidence intervals for the association between an interquartile range increase in particle
constituents and ischemic stroke onset in the following 24 hours among 1,060 patients hospitalized for acute ischemic stroke who resided in the
Boston, Massachusetts, metropolitan area, 2003–2008. The results are presented for models with parameters for constituent concentration (A),
constituent concentration adjusted for total particulate matter (B), and constituent residuals (C). Al, Aluminum; BC, black carbon; Br, bromine;
Ca, calcium; Cl, chlorine; Cu, copper; Fe, iron; K, potassium; Mn, manganese; Na, sodium; Ni, nickel; Pb, lead; PM2.5, particles with
aerodynamic diameters less than 2.5 µm; S, sulfur; Se, selenium; Si, silicon; Ti, titanium; V, vanadium; Zn, zinc.
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several sources and a single source emits several pollutants,
we often cannot distinguish between the independent toxic-
ities of correlated constituents in an observational study.
Findings on health risks associated with a given constituent
may represent the toxicity of that constituent, it may serve
as a marker of other constituents that covary with the con-
stituent of interest (confounding), or it may represent the
combination of the constituent’s independent toxicity and
its interaction with covarying constituents. Therefore, a
study of constituents should be guided by a solid theoretical
framework and experimental evidence.

Measurement errors for constituents are usually greater
than those for PM2.5. Furthermore, the residuals created on
these mismeasured constituents lead to greater variance of
the residuals from the linear regression models. These issues
may influence point estimates and standard errors for the pa-
rameter in a health outcome model. Furthermore, the degree
of measurement error may differ by pollutant. Therefore, the
coefficients for some constituents may be stronger simply
because they are measured with less error than other constit-
uents. During the 7 years of our study, there was a large var-
iation in the number of days on which a constituent could
not be detected by the instrument (Table 2).

The association between pollution and health outcomes
may display different spatial and seasonal patterns for differ-
ent constituents (16). Additionally, the mechanism linking
ambient pollution and health outcomes may vary by constit-
uent, so the relevant time lags may differ by constituent
(5, 8). Stratifying by season and by region and assessing
different lag periods may help further characterize the associ-
ation of interest. Modeling of a potential confounder, such
as temperature, will likely have a different lag structure for
each pollutant, raising issues about the correct model specifi-
cation in the presence of temporal misalignment. New
methods have been developed to incorporate several distribu-
ted lag functions and thereby reduce such errors, although
they have not been largely adapted in recent studies (17).

Exposure misclassification in pollution studies involves
a combination of 2 types of measurement error (18).
Berkson-type errors occur when spatially averaged ambient
pollutant levels that reflect the average level of exposure in
the population are used as a proxy for each individual’s
personal exposure and yield no or little bias but decrease
statistical power. On the other hand, classical measurement
errors are due to differences between average personal ex-
posure and the true ambient level. They tend to bias associ-
ations toward the null, with greater attenuation for
constituents with higher error variance of the surrogate rela-
tive to the variance of the true exposure. In a linear model
with 2 correlated pollutants, only one of which has a true
harmful effect, the second (harmless) pollutant will gener-
ally only appear harmful if there is a strong negative corre-
lation between the measurement errors of the 2 pollutants.

In addition to outdoor concentration levels, personal ex-
posure levels are influenced by time spent indoors, residen-
tial characteristics, and indoor sources. For constituents
with indoor sources, using fixed monitors as a proxy of per-
sonal exposure induces classical error that generally results
in an underestimation of the exposure-disease association.
A recent report (19) showed that the indoor–outdoor

relations among constituents varied substantially across pol-
lutants. Applicable to our illustrative example, the authors
compared several measurements in a Boston sample and
showed that for pollutants with strong indoor sources (e.g.,
calcium and silicon), monitor concentrations may be a
weaker proxy than for pollutants dominated by outdoor
sources (e.g., sulfur, selenium, and vanadium).

It is difficult to anticipate the impact of measurement
error due to the lack of empirical evidence on the magni-
tude of these errors and how the components of error
covary across pollutants. Future research is necessary to
examine the multivariate error structure across constituents
within a city, to examine the implications of such measure-
ment error on studies of health outcomes, and to develop
methods for including measurements below the level of de-
tection and incorporating measurement uncertainty into
health outcome models.

Several studies used a hierarchical approach to quantify
how the association is modified by season- and region-
specific particle composition (7, 9, 10). This method could
not be carried out in our data set because it requires data
from multiple regions with sufficient variation in PM2.5.
Furthermore, this approach as applied to date primarily
addresses the impact of season-specific average particle
composition and does not capture the biologic relevance of
daily variability in PM2.5 composition.

Others have used factor analysis/source apportionment
methods to convert daily levels of constituents into daily
source factor scores to identify combinations of pollutants
(source contributions) responsible for adverse health out-
comes, such as traffic pollutants or pollution from oil com-
bustion (20, 21). These studies modeled the impact of source
concentrations (similar to our “constituent concentration” ap-
proach) or the impact of sources adjusting for total PM2.5

(similar to our approach of “constituent concentration adjust-
ing for PM2.5 mass”). However, the factor loadings for the
ostensibly identical source tend to differ across cities. There-
fore, similarly labeled sources in different studies do not rep-
resent identical exposures. Moreover, this approach still
requires consideration of confounding by PM2.5.

In the present study, we showed several options for ac-
counting for confounding by PM2.5 in studies in which the
impact of constituents on health outcomes are evaluated. Re-
sidual methods are particularly useful for isolating the varia-
tion in exposure due to a constituent from the variation in
PM2.5. Among the model options that provide valid estimates
by accounting for confounding by PM2.5, each approach in-
volved different considerations and different interpretations
but yielded results with similar relative rankings.
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